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Objectives

Program Objectives

* Develop technology to aid in creation of a
viable “distributed energy” system

» Provides electricity from stationary solid
oxide fuel cells

> Provide heat from the fuel cells

»Provide useable hydrogen from the
synthesis gas

 Integrate CHP into distributed H, production
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Overview

Timeline Barriers

. Project start 9/1/2005 DOE Technical Barriers for Distributed

Generation
* Project end date 10/1/2008 — Develop CHP fuel cell systems
. Percent complete 50% — Verify integrated stationary fuel cell
systems

— Mitigate technical barriers to stationary

BUdget fuel cells

- Total project funding DOE Technical Targets for 2010
— 40,000 hours durability
— DOE share $1,091,000 _  $1000/kWe
— Contractor share $ 343,000
« Funding received in FY06: $0 Partners

«  University of Cincinnati
« Funding for FY07 $0

«  State of Ohio’s Air Quality Development
Authority

«  University of North Dakota
« CTP Hydrogen
 U.S. Department of Energy
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Interactions and Collaborations

Academic and Industrial Partnerships

 University of Cincinnatsi

« State of Ohio’s Air Quality Development
Authority

« University of North Dakota
« CTP Hydrogen
U.S. Department of Energy
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Integrated Energy Vision

Combined Heat, Power, Fuel, H, and Carbon Recycling

Carbon dioxide S~ ﬂ
Electrostatic i > Fischer-Tropsch
hesi
Cyclone 7@ Synthesis
I Water Gas Shift Enriched CO + H,
N = to SOFCs
Separation e
Fuel Feeder p@ e
Gasifier
- Bt
Algae
Return from =5
Cyclone .
TZL H, for automotive PEM
=~ Reaction chamber 4
HZO + 02 + Fuel

bayless@ohio.edu
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Electrochemical Energy Conversion

Planar Solid Oxide Fuel Cells
Fuel: CO and H,

N s

CO+H2+02_)26_+H20+C02

o
< Ni-YSCZ Anode
O YSZ
Useful Power electrolyte
‘ e? La-MnO; Cathode
O, +4e — 20%

ai "

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Sulfur Tolerant Anodes

Perovskites for sulfur tolerance

 What is a perovskite?

— General composition: ABO, - | iy T}
* e.g. LaSrVO, o 17 3 ¥ R
— Varying amounts of AandB | rJ o a U,
components affect material ]. = {! X
properties such as electronic O— O N L
conductivity and catalytic \
activity - 5
Qo
O a

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Experimental

Test Stands
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Experimental

Screen Printed Top Layer and Button Cell Setup
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Sulfur Tolerant Anode

Results
1 _ 0.2
Ni-Anode + LSV
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Current Density (Alcmz)

VI Scan Results for Nextcell Anode and Nextcell Anode with Sulfur
Tolerant Top Layer Utilizing Coal Syngas with 160ppm H,S.
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Sulfur Tolerant Anode

Results

0.05

CSG

0.04 with H,S
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EIS Results for Nextcell Anode and Nextcell Anode with Sulfur Tolerant
Top Layer Utilizing Coal Syngas with 160ppm H.,S.
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Model Application
SOFC Anode Characteristics

Anode Electrode Properties [Trembly]

Parameter

Thickness, L

Tortuosity, T

Permittivity, Y=¢/1

Mean Pore Diameter, <r>

Operating Temperature, T
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Model Application

Pressure Effects
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Hydrogen profiles through the electrode at 500 mA/cm?.
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Model Application

Pressure Effects
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H, mole fraction at the anode-electrolyte interface, and
concentration overpotential loss due to gas phase diffusion (500 mA/cm?2)
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Hydrogen Generation

Chemical Electrolysis using MEICs

fuel out

Steam in

Schematic of H, generation using chemically drive hydrolysis (CTP-Hydrogen)
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Hydrogen Generation

Chemical Electrolysis using MEICs

Membrane
Cathode (Steam) Anode (e.g. CO)

H,O +2e = I—I;+[}X CO+O™ = CO, + 2e

:II. ) : . '. 1':'1.]..“:

il Eu \ conducting phase

Ze electronic
conducting phase

H, generation by chemically driven electrolysis
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Ceramic Membranes for H, Separation
SCTM Membranes

S1-Surf, f - ;§1—C£ross‘!

B " 4y grgeo.gozgo.o#mo.osgw (82),(84)

O el A Lo rC€.85Y0g 051 Mg 54700539 ;
s et SrCey 15 YDy o TM, 052, 15044 (S6), and
SrCeq.65YDPg.05TMg 545 2503.4 (S8)
were prepared by using EDTA-citric acid
e v combined complex method with total metal ions
and pH value were kept to 1.6: 1.0: 1.0 and 6.0
respectively. The gel was then heated at 120-
150°C for several hours to make primary
powders, which was calcined at 900°C for 5 h.
The resulted powders were pressed into disks
e T .. and sintering at 1500°C for 24 hours. SEM

images of the disks are shown (Guliants)

Se-Surf. S6-Cross
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Ceramic Membranes for H, Separation
SCTM Membranes

Hydrogen permeation cell
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Ceramic Membranes for H, Separation

SCTM Membranes

Electrical conductivity, S cm
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Ceramic Membranes for H, Separation
SCTM Membranes

H, permeation flux, ml/(min cm,)
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Gasification to Optimize H, Production

Indirect Fluidized Bed Gasification

]
Electrostatic
Cyclone
g x
Solids Feeder
e —

Gasifier

Return from
Cyclone

~+——————Reaction chamber

E H,0 + O, + Fuel
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Gasification to Optimize H, Production

Indirect Fluidized Bed Gasification

Governing Reactions

CH4 + 202 — C02 + 2 Hzo AH = = 8020 kJ/mOI
Pyrolysis (devolatilization)

C+H,0—- CO+ H,
C+CO,—2CO

CH, + H,O0 — CO + 3 H,
CH,+CO,—-2CO+2H,
CO + H,0 —» H, + CO,

H =+ 119.3 kd/mo
+ 170.0 kd/mo
+ 206.1 kd/mo
+ 247.3 kdJ/mo
- 41.15 kd/mo

> DB B B
l
I | I | I |
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Gasification to Optimize H, Production

Indirect Fluidized Bed Gasification

Gas Yields as a function of burner O, level
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Gasification to Optimize H, Production

Indirect Fluidized Bed Gasification

Reactor and Burner Temperature as a function of burner O, level
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